Strange Cold Start diving issue - Ford Powerstroke Diesel Forum
Powerstroke.org is the premier Diesel Truck Forum on the internet. Registered Users do not see the above ads.
Reply
 
LinkBack Thread Tools Display Modes
  #1  
Old 01-01-2010, 04:39 PM
Member
 

Join Date: Aug 2009
Location: South NJ
Posts: 44
Thanks: 0
Thanked 0 Times in 0 Posts
Feedback Score: 0 reviews
Strange Cold Start diving issue

sorry, should read Driving, not diving.

Maybe this is a normal thing... not sure as this OBS is my first diesel.

Problem seems to only occur in early morning (cold starts) before driving truck for a few minutes.

I get this weird air sound coming from what sounds like the middle of the engine bay. (I havent figured out how to sit in the bay and check while driving, ha!). I have owned plenty of turbo gas vehicles and it sounds as if the charge pipe from the turbo comes disconnected, just blowing air. Truck is extremely slugish and underpowered at this time until the noise goes away.
Auto trans, and it seems to shift gears fine once noise calms down, but it will do the same thing at the begining of next gear. Almost as if the noise occurs due to load.
Is this some sort of a bypass where under load under a certain operating temp, the boost is controlled through a pop-off valve of some sort not allowing boost. Almost the reverse of a wastegate??

Let me know if this is something normal, or if I should start investigating.

Thanks in advance

Last edited by KGParts; 01-01-2010 at 04:43 PM.
Reply With Quote Quick reply to this message
Sponsored Links
Advertisement
 
  #2  
Old 01-01-2010, 04:51 PM
Compression Ignition Addict
 

Join Date: Dec 2007
Location: Ocala, Florida
Posts: 714
Thanks: 0
Thanked 1 Time in 1 Post
Feedback Score: 0 reviews
All normal. Exhaust Back Pressure Valve closing....

It is an attempt to try to warm up quicker... I unplugged mine!
Reply With Quote Quick reply to this message
  #3  
Old 01-01-2010, 05:01 PM
Shade tree mechanic


 

Join Date: Mar 2008
Location: Lake Tapps, Wa.
Posts: 8,286
Thanks: 0
Thanked 0 Times in 0 Posts
Feedback Score: 1 reviews
Yep, perfectly normal. There is a valve back there that closes to help the engine warm up faster.
Reply With Quote Quick reply to this message
  #4  
Old 01-01-2010, 05:17 PM
shaking things up

 

Join Date: Jan 2009
Location: wexford-Pa
Posts: 3,651
Thanks: 0
Thanked 1 Time in 1 Post
Feedback Score: 0 reviews
yep what they said completely normal i also disconnected mine and wired it to a switch to use as an exhaust brake as well as a warm up feature i can flip the switch on a cold start for a few min of idle b4 take off and then manually open it when b4 i start to move
Reply With Quote Quick reply to this message
  #5  
Old 01-02-2010, 03:56 AM
Member
 

Join Date: Aug 2009
Location: South NJ
Posts: 44
Thanks: 0
Thanked 0 Times in 0 Posts
Feedback Score: 0 reviews
Thanks, Good News! I figured it was something normal for cold starts as I was describing...

Where exactly is it located, and are there any write-ups on how to turn it into an exhaust break. Sounds interesting.
Reply With Quote Quick reply to this message
  #6  
Old 01-02-2010, 04:53 AM
Compression Ignition Addict
 

Join Date: Dec 2007
Location: Ocala, Florida
Posts: 714
Thanks: 0
Thanked 1 Time in 1 Post
Feedback Score: 0 reviews
Here ya Go:

Exhaust Brake - Make one by Doing It Yourself

Mod & Article by Jonathan Ryan

The Engine Exhaust Back Pressure Valve (EBPV) is a butterfly type valve located on the outlet of the turbocharger, between the turbine and the down pipe. It is controlled by the Power train Control Module (PCM), and activated by engine oil pressure. Its purpose is to decrease engine warm up time in cold weather by restricting exhaust flow out of the engine. It can be very easily and very inexpensively converted into an engine exhaust brake by adding some simple wiring and a switch.

The valve is very practical for assisting braking. When used correctly its braking effect can be compared to the restriction gained by downshifting one gear while descending a hill. The valve is most valuable to braking when engine speed is between 2500 and 3000 RPM. Unfortunately, it will lose the engine braking abilities when engine speed drops below 2000 RPM.

The following method outlines the manner in which the EBPV can be converted to a braking device. The following will cover any vehicle equipped with a manual transmission. Vehicles equipped with automatic transmissions will require an additional circuit to be added in order to maintain torque converter lockup while the exhaust brake is activated. That circuit will be addressed at the end of this article, however the majority of this article is applicable for both transmission types.

EBPV Schematic at Webshots Outdated Link

In order to control the function of the EBPV, I recommend using a 3-position switch. This type of switch will control the Valve in the following manner:

Switch in the OFF Position (center position): The EBPV will function normally, as it would for a stock vehicle. This means that the valve will only actuate in order to warm up the engine.

Switch in the "A" ON Position: the EBPV closes and remains closed until the switch is turned OFF.

Switch in the “B” ON Position: the EBPV will close whenever the brake pedal is pressed, and will open when the pedal is released. There will be a 2-3 second lag for the exhaust valve to close upon stepping on the brake. Thus, it is important to understand that when using it in the "B" ON position to push the pedal and hold it down with steady pressure. The reason for keeping pedal pressure is that the EBPV actuator is receiving power from the brake light circuit when the switch is in this position. Thus, pumping the brakes or releasing the pedal will cause the valve to deactivate or open. Furthermore, once the brake is applied again it will take another two seconds for the EBPV to activate again. Unfortunately, pumping the brake pedal will result in the exhaust valve remaining in a constant open position. This will provide ZERO engine braking force. To prevent this less than desirable phenomenon from happening, it is important the operator keep his foot on the brake lightly enough that the brake light switch is continually activated. I prefer touching and holding my pedal just hard enough for the brake lights to come on; then, when I hear the EBPV close (it makes a distinct hissing), I begin applying additional pressure to the brake pedal. Reducing brake pedal pressure can be done without losing exhaust-braking force, as long as there is enough pedal pressure maintained to keep the brake lights on.

Materials:



(1) ON-OFF-ON type Heavy Duty Double-Pole Double-Throw (DPDT) toggle switch. It will have connections for 6 wires on the back, and the switch will have 3 positions UP=ON, CENTER=OFF, DOWN=ON. RS (Radio Shack)# 275-1533A $2.49 or 275-710 $2.99 25'-30' of 18 gauge wire. 5'-7' each of 4 different colors is best. (10-12) Ring or Spade terminals for wire connections. 18-22 gauge are red. RS# 64-3032A or 64-3033A $1.49 (4-6) Butt connectors for wires. 18-22 gauge are red. RS# 64-3037A $1.49 (2) Rectifier Diodes. A diode is the equivalent on an electrical check valve, allowing current to flow in only one direction. RS# 276-1114 (2) Optional Mini Indicator lamps. RS# 276-085A (red) 276-084A (green) $1.99 each. (By using the switch indicator lights, the operator immediately knows how the EBPV is activated or not.) 10' Split loom for protecting wires. RS# 278-1264 $3.99 (10) Wire ties. (1) Inline fuse holder. RS# 270-1213 $1.99 Electrical tape. I recommend Liquid Electrical Tape as being better for almost everything. Tape and Marker (In order to label wires.)

Tools:


Wire cutters/strippers Screw Drivers Drill w/ bits up to 7/16" Volt/Ohm Meter, or at least a test light. Soldering Iron is recommended but not essential. Torx bits &/or 1/4" drive metric sockets to remove dashboard trim to install switch.

Procedure:

Decide on a place in the dash to install the switch. I installed mine in the black panel just to the right of the "Wait to Start" light. There is room for 2-3 switches there.

Remove the necessary trim and molding around the steering column / instrument panel to access the reverse side of where you want the switch. Drill a 1/2" hole, and install the switch. Re-install the molding to make sure it fits into place when the switch is installed. Then, remove the switch and the molding again for ease of access while wiring.

Wire #1: Decide what you will use for a positive power source. Insure that this source is one that is "ON" only when the ignition is in the “ON” position. I recommend the 8 gauge, gray/yellow wire in the bundle under the steering column. You can also tap a fuse in the fuse panel. Run wire [#1] from the source to the switch, connecting it to terminal A2. I numbered the terminals as viewed from the back of the switch Install the inline fuse holder on this line. Make sure to leave 6"-12" or more of slack on all the wires. You can always bundle them up later.

Wire #2: Decide placement of a negative power point or ground, and run a wire from this to the switch, connecting it to terminal C1.

Connect one light to terminals A1 and C2; this is light A. Connect the other light to terminals B1 and C2; this is light B. Drill holes for the lights just above and below the switch. Install the lights with B in the top hole, and A in the bottom. I recommend this because when the switch is down, contact is made between A+C; when the switch is up, contact is between B+C. For simplicity, the diagram does not show the lights "crossed" like this.

Remove the black-hinged cover from over the fuel filter area in the engine compartment.

Wires#3 & #4: Run two wires from the switch through the firewall into the engine compartment. Connect one [#3] to terminal C2 and run it to the front of the engine. Connect the other [#4] to terminal B2 and run it to the brake master cylinder. If you have a horizontal diamond shaped plate about 2.5" wide just to the passenger's side of the clutch cylinder, remove the screws and run the wires through it. Otherwise, you may need to drill a hole. I always find that running the wires is the hardest part of any wiring project.

There should be a green wire by the driver's side of the master cylinder in the group of 4 marked "Center High Mount Stop Lamp Feed." This wire most likely will not be connected to anything. This wire is only energized when the brake lights come on. Connect wire [#4] to this one. If this wire is not present, use a voltmeter or test light to find a wire that is hot only when the brake lights are on and connect to that wire instead.

Locate the wires that travel from the PCM to the EBPV. There should be a 2-wire plug just under the turbo compressor. It is located towards the front of the engine between the turbocharger and the fuel pump on the intake side of the turbocharger. The plug is attached to the turbo pedestal. Disconnect this plug, and remove the loom (protective plastic shielding) on the plug side moving away from the turbo, to expose the wires inside. Slide off the loom until it reaches the intersection of the larger wire bundle. This will expose both wires; one wire is black w/gray, the other gray w/red.

The Two Rectifier Diodes that are required will each have a silver band around one end. Twist the wires from the "silver" ends together making a "Y.” The "black" ends will be at the top and the silver ends at the bottom of the "Y.” Cut the gray w/red wire 2"-3" before the plug, strip the insulation back 1/2" or so, and solder the black end on one diode to the end of the cut wire that does NOT go into the plug. Solder the black end on the other diode to wire [#3]; solder the two silver ends to the gray w/red wire that goes into the plug. The diodes are necessary to prevent the brake lights from coming on when the PCM operates the EBPV, and to prevent the PCM from receiving a 12v signal from wire [#1]. If you don't have a soldering iron, you can use crimp connectors.

Coat all the wire connections with several coats of Liquid Electrical Tape, then wrap them with regular electrical tape, and replace the loom. Also, cover wires [#3 & #4] with loom, all the way to the switch. Bundle up any excess wire with wire ties, and secure them all to prevent chafing. Install the switch in its hole, and replace the dash trim.

Automatic Transmission Circuit:

If the intention is to use the EBPV as a brake with an Automatic Transmission equipped vehicle, then an additional circuit is required in order to reap the most engine braking benefit from this application. This circuit will keep the torque converter locked up while the valve is in an activated state. In effect, it maintains engine RPM in relation to ground speed and prevents transmission disconnection, which would result in loss of engine speed, ultimately reducing the effectiveness of the exhaust valve as an engine brake.

Auto Trans Circuit Procedure: Run a wire from [#3] to connect to the TC lockup circuit. Install a diode on that wire with the silver end towards the transmission.

Testing:

To test, start the engine. With the switch in the up position, the upper light should come on when you press the brake pedal, and you should hear a distinct hissing or swooshing sound when the EBPV closes, after 2-3 seconds. With the switch down, the bottom light should come on and stay on, and the EBPV will close immediately.

Conclusions:

I find no advantage to using the EBPV brake with an unloaded truck during normal driving. However, when I am hauling a heavy load, it is worth its weight in gold. During normal hauling, I leave it in the up position, so I will have extra braking power when I need it. For exit ramps and long or steep downgrades, I put it in the down position and leave it on as long as practical. When the truck is parked, you can leave the switch in the down position, as it is useful as an anti-theft device. The activated valve will not allow the truck to go much over 33 mph. This is also very useful for very fast warm-ups in winter.
Reply With Quote Quick reply to this message
The Following User Says Thank You to ZachBoyer For This Useful Post:
JustinCovolo (03-27-2014)
Sponsored Links
Advertisement
 
Reply

Quick Reply
Message:
Options

Register Now

In order to be able to post messages on the Ford Powerstroke Diesel Forum forums, you must first register.
Please enter your desired user name, your email address and other required details in the form below.
User Name:
If you do not want to register, fill this field only and the name will be used as user name for your post.
Password
Please enter a password for your user account. Note that passwords are case-sensitive.
Password:
Confirm Password:
Email Address
Please enter a valid email address for yourself.
Email Address:

Log-in

Human Verification

In order to verify that you are a human and not a spam bot, please enter the answer into the following box below based on the instructions contained in the graphic.



Thread Tools
Display Modes

Posting Rules
You may post new threads
You may post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is Off
Trackbacks are On
Pingbacks are On
Refbacks are On



All times are GMT -8. The time now is 07:57 PM.


Powered by vBulletin® Copyright ©2000 - 2014, Jelsoft Enterprises Ltd.
Search Engine Optimization by vBSEO 3.6.1
Garage Plus, Vendor Tools vBulletin Plugins by Drive Thru Online, Inc.

vB.Sponsors